

Student Record-Keeping Database

Tanisha Mehta, Mahek Shah, Melisa Hayalioglu, Melissa Pinto

CP363: Database Design

Dec 10, 2021

1. Introduction

 The purpose of creating this database is to create an organized system for a

university to feasibly store student information and records. This database is designed

to store information relevant to a university that is, it will manage relevant student

information and it will be able to accommodate any necessary changes or updates with

respect to: university programming (courses offered, financial aid types, specializations

offered, etc.) and students. This includes general student information such as grades,

courses taken by the student, the professors teaching each course, and the student’s

financial information. The information in the database should be able to provide

information on a student’s graduation records, their course re-enrollment and the

degrees they pursue.

2. Detailed Database Design

2.1 Database design

2.1.1 Conceptual Diagram

Figure 1: UML diagram for all table relationships.1

1 Created using (1).

2.1.2 Description

Figure 1 displays the conceptual model of the student record management database.

The database is designed to store information that the university would need in order to

manage the academic records and progress of students, along with supplementary

information regarding professors and course registration. There are 3 tables– the

aid_info, specializations and courses tables– that store general bulk information

regarding financial aid types, all degrees offered at the university and all courses offered

by the university respectively. Then, each of the three tables are related to 3 sub-tables

which store specific information regarding each student– as is the case with designation

and financial_aid tables – or regarding each course’s offering. In this manner, these

three tables are subsets of the aforementioned three bulk-information tables. Designing

the database like this enables it to be more flexible (for instance, the university can add

a new specialization at any time and this will not affect any relationships between

tables) and it helps prevent any insertion anomalies that might otherwise occur. Also,

the breadth of information stored in the database enables a user to quickly access any

pertinent student information such as their: degrees (majors and minors), courses

taken, marks obtained, contact information, repeated courses, etc.

2.1.3 Purpose of Each Table

1. Student Table

The student table contains basic student information. Its attributes are the student’s ID,

first name, last name, date of birth and residency (whether the student is international or

domestic). The primary key in this table is the studentID and its set to data type varchar

which will take a string length up to 45 characters of letters, number, and special

characters which will support our student ID of studxxxxx partial letters of a prefix “stud”,

and then 5 numbers. All students must have a unique studentID - and as it is set to a

primary key, it will have a unique constraint placed upon it. studentID is also referenced

in other tables as well, and it will often act as the foreign key of other tables in order to

link student data together. Additionally, other attributes are first_name, last_name, and

residency, which are all datatype varchar which will take a string length up to 45

characters. Along with the date attribute using a built in date data type to store the

birthdate of each student. The student table is one of the key tables that connects with

other tables to further navigate and store information through the database.

2. Graduation Table

The graduation table stores necessary information that is needed for the student’s

graduation - including date of admission, date of graduation, credits, co-op status, and

the student’s GPA. This information will all be necessary and useful for the

administration to track the student’s progress and eligibility to graduate. In the

graduation table, the primary key is a composite key, composed of the studentID and

the admission_date. The studentID is referenced from the Student table, and in the

graduation table, studentID acts as both a primary key and foreign key, enabling

relationship between the two tables. Additionally, a date data type is used for the

attribute admission_date as part of the composite primary key. If a student is part of the

school’s co-op program, then the anticipated graduation date will be pushed back thus

changing the value of the grad_date column. Additionally, the student’s cumulative GPA

and total credits will be stored via the attributes cGPA and credit_totals respectively.

3. Designation Table

The designation table stores information about a student’s degree programs, the names

of any majors or minors being taken by a student, as well as the dates enrolled

(start_date) and graduated– end_date (this date is Null if the student hasn’t yet finished

their degree). The designation table contains a composite primary key, composed of the

specialization name (spec_name) and student ID (studentID), enabling a relationship

between the student table and the specializations table. The relationship between the

specializations table references spec_name column which gives information about the

type of faculty the student is part of. Based on that information, the level column is set if

the degree is a minor or major. The designations table has been designed for students

to take multiple majors or minors in combination. As the primary key consists of the

studentID and the spec_name, the unique restriction is placed upon a student

attempting to enroll in the same major or minor multiple times - this would not be

permitted.

4. Specializations table

The specializations table stores information regarding all of the different programs

offered by the university, and the associated faculty. This table was necessary to create

in order to allow students to have multiple majors and minors without redundancy of

information in the designation table and also to enable the university to add new

specializations without affecting any other tables. The specialization table contains a

primary key for spec_name, and based on that, the name of faculty is given with the

varchar data type. The specialization table stores general information on all available

specializations at the university, and then the designation table references it and in this

way, each student’s group of majors & minors is a subset of all specializations stored in

the specialization table.

5. Financial Aid Table

The financial aid table keeps track of the students’ financial aid information, which is

necessary for the university when calculating tuition and the amount owed by students.

The financial aid table contains a primary composite key consisting of studentID and

aidID. It also contains two foreign keys, studentID which references the student table

and aidID which references the aid_info table. Since the aidID is a foreign key, it

establishes a relationshipwith the aid_info table, obtaining more specific information

about the aid being awarded to the student. Overall, the financial aid table links a

student (via the studentID) and the aid given to that student over the course of their

degree.

6. Aid_info table

The aid_into table contains general information about each financial aid. This table is

designed to supplement and provide info for student financial aid– such as looking up

the name of an aid using its aidID and also the type of aid (is it a scholarship, loan,

grant, etc.). Storage of general aid information in this way (in a separate table) is useful

in helping prevent data anomalies and redundancy. Additionally, it allows the university

to update the aid_info table (ex: if a new scholarship is being offered) without affecting

any other tables. The primary key for the aid_info table is the aidID, which serves to link

it with the financial_aid table. The aid_info table also contains the name of the aid,

whether it is funded by the government or a scholarship, if it's a loan scholarship or

award, and the total yearly max amount of each given aid if applicable (some financial

aid’s such as OSAP have a yearly maximum).

7. Contact Table

The contact table is used to store the contact information for each student. This

information is important to provide information to the university for reaching the student

when needed. The primary key for the contact table is the studentID that is referenced

from the Student table, as well as storing information related to the phone, email,

address, city, state, country, and zip code. When NATURAL JOIN is performed on the

contact and student table, the resulting table will contain all the student’s personal

information.

8. Offering table

The offering table allows for the university to store and handle information regarding

course registration. The CRN serves as an identification for each course, and is thus set

to be the primary key of the offering table. It consists of the courseID, followed by a

letter designating the term it is offered, and then two numbers to indicate the year it is

offered and any additional characters to specify section (as some courses have multiple

sections each term). The design of the CRN in this way enables a single course to have

multiple offerings at the same time and also to distinguish between each offering (ex: in

fall 2021 vs. winter 2022, etc.). By using the CRN, the database is able to differentiate

between the same course taught in different semesters or different years, and then link

that information with each student as needed. For example, a join can be performed

between the offering and enrollment table in order to consolidate information on courses

each student has taken, and the grade obtained in the course. The CRN is set to varchar

data type with a string length of 25. Additionally, courseID, profID, and term are also

set to varchar which will take a string length of 45 characters and are the foreign keys in

this table which establishes relationships between the professor, courses, and

enrollment tables since courseID references courses(courseID) and profID references

Professor(profID).

9. Courses

The courses table will store pertinent information regarding all courses available at the

university. The courses table focuses specifically on information regarding a specific

course, such as credits, and faculty, while the offering table stores relevant, but different,

information– namely, the term each course is offered and which professors are teaching

it. As the database was moved into 3NF, it was necessary to separate these two tables

to prevent data anomalies, specifically that there would be significant amounts of

repeated information regarding departments and credits. In the courses table, the

courseID is a primary key, which connects it to the offering table. Both course name and

department are set as varchar datatype. The credits are float since the value of the

course can be 1.0 or 0.5.

10. Professor

The professor table stores basic information regarding all professors at the university. It

has only a few attributes. The professor table includes a primary key of the professor ID

which is referenced in the offering table to visualize which professor has taught which

course and when. The profID is the primary key, which enforces a unique constraint to

ensure that no professor is entered multiple times into the table. Each professor ID is

associated with the respective professor’s first name and last name– both attributes of

which are set to the varchar data type.

11. Enrolment table

The enrolment table stores all information pertaining to a student’s course history and

performance in each course. Additionally, it contains an attribute: completion_status

that indicates whether the student has withdrawn from a specific offering, passed, failed

or deferred its exam, which provides a useful extra layer to filter through courses that

have a high failure rate for example, or to see if a student has re-enrolled in a course

after failing it on the first try. All this information can then be used by the university for

student transcripts. The primary key for the table is a composite key consisting of

studentID and CRN. Both of these fields are also foreign keys that reference the

Student and offering tables respecively. Searching the enrolment table using a studentID

will display all of the CRN’s that student has registered in during their time at the

university. Additionally, information about the student’s grade and completion status will

also displayed. As briefy mentioned before, completion status is necessary because it

allows the university to track whether a student has failed a specific course on the first

try and whether they have subsequently re-enrolled at a later offering. Of course,

completion status also encodes more information other than a simple pass or failure; it

can be set to any of the following: withdrawn (if a student has withdrawn from a course

offering), failed, satisfactory (if a student took the course and passed), deferred (if the

exam was deferred for one reason or other), in progress (if the course is still in

progress).

Conclusion
In conclusion, the student record-keeping database includes important student

information that should be easily and efficiently accessible. It was designed to allow

easy access to all relevant details and to accommodate any changes to the university

curriculum in the future without storing redundant data. This design document outlines

the tables, their attributes and relationships to other tables and clarifies any design

considerations needed when actually creating the database system.

References
1. SQLDBM (n.d.)- Online Database Modeler. SQLDBM. Retrieved December 1, 2021,

from https://app.sqldbm.com/.

2. Bois, C. (n.d.). CSV generator. Toolbox for developers. Retrieved December 10, 2021,

from https://extendsclass.com/csv-generator.html.

